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ABSTRACT

Modern machine learning models are opaque, and as a result there is a burgeoning academic subfield
on methods that explain these models’ behavior. However, what is the precise goal of providing such
explanations, and how can we demonstrate that explanations achieve this goal? Some research argues
that explanations should help teach a student (either human or machine) to simulate the model being
explained, and that the quality of explanations can be measured by the simulation accuracy of students
on unexplained examples. In this work, leveraging meta-learning techniques, we extend this idea to
improve the quality of the explanations themselves, specifically by optimizing explanations such that
student models more effectively learn to simulate the original model. We train models on three natural
language processing and computer vision tasks, and find that students trained with explanations
extracted with our framework are able to simulate the teacher significantly more effectively than ones
produced with previous methods. Through human annotations and a user study, we further find that
these learned explanations more closely align with how humans would explain the required decisions
in these tasks. Our code is available at https://github.com/coderpat/learning-scaffold.

1 Introduction

While deep learning’s performance has led it to become the dominant paradigm in machine learning, its relative
opaqueness has brought great interest in methods to improve model interpretability. Many recent works propose
methods for extracting explanations from neural networks (§ 6), which vary from the highlighting of relevant input
features [Simonyan et al., 2014, Arras et al., 2017, Ding et al., 2019] to more complex representations of the reasoning
of the network [Mu and Andreas, 2020, Wu et al., 2021]. However, are these methods actually achieving their goal of
making models more interpretable? Some concerning findings have cast doubt on this proposition; different explanations
methods have been found to disagree on the same model/input [Neely et al., 2021, Bastings et al., 2021] and explanations
do not necessarily help predict a model’s output and/or its failures [Chandrasekaran et al., 2018].

In fact, the research community is still in the process of understanding what explanations are supposed to achieve, and
how to assess success of an explanation method [Doshi-Velez and Kim, 2017, Miller, 2019]. Many early works on
model interpretability designed their methods around a set of desiderata [Sundararajan et al., 2017, Lertvittayakumjorn
and Toni, 2019] and relied on qualitative assessment of a handful of samples with respect to these desiderata; a process
that is highly subjective and and is hard to reproduce. In contrast, recent works have focused on more quantitative
criteria: correlation between explainability methods for measuring consistency [Jain and Wallace, 2019, Serrano
and Smith, 2019], sufficiency and comprehensiveness [DeYoung et al., 2020], and simulability: whether a human
or machine consumer of explanations understands the model behavior well enough to predict its output on unseen
examples [Doshi-Velez and Kim, 2017]. Simulability, in particular, has a number of desirable properties, such as being
intuitively aligned with the goal of communicating the underlying model behavior to humans and being measurable in
manual and automated experiments [Treviso and Martins, 2020, Hase and Bansal, 2020, Pruthi et al., 2020].
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Figure 1: Illustration of our SMaT framework. First, a student model is trained to recover the classifier’s predictions
and to match the explanations given by the explainer. Then, the explainer is updated based on how well the trained
student simulates the classifier (without access to explanations). In practice, we repeat these two consecutive processes
for several steps. Green arrows and boxes represent learnable components.

For instance, Pruthi et al. [2020] proposed a framework for automatic evaluation of simulability that, given a teacher
model and explanations of this model’s predictions, trains a student model to match the teacher’s predictions. The
explanations are then evaluated with respect to how well they help a student learn to simulate the teacher (§ 2). This is
analogous to the concept in pedagogy of instructional scaffolding [Van de Pol et al., 2010], a process through which
a teacher adds support for students to aid learning. More effective scaffolding—in our case, better explanations—is
assumed to lead to better student learning. However, while this previous work provides an attractive way to evaluate
existing explanation methods, it stops short of proposing a method to actually improve them.

In this work, we propose to learn to explain by directly learning explanations that provide better scaffolding of the
student’s learning, a framework we term Scaffold-Maximizing Training (SMaT). Figure 1 illustrates the framework:
the explainer is used to scaffold the student training, and is updated based on how well the student does at test time
at simulating the teacher model. We take insights from research on meta-learning [Finn et al., 2017, Raghu et al.,
2021], formalizing our setting as a bi-level optimization problem and optimizing it based on higher-order differentiation
(§ 3). Importantly, our high-level framework makes few assumptions about the model we are trying to explain, the
structure of the explanations or the modalities considered. To test our framework, we then introduce a parameterized
attention-based explainer optimizable with SMaT that works for any model with attention mechanisms (§ 4).

We experiment with SMaT in text classification, image classification, and (multilingual) text-based regression tasks
using pretrained transformer models (§ 5). We find that our framework is able to effectively optimize explainers
across all the considered tasks, where students trained with learned attention explanations achieve better simulability
than baselines trained with static attention or gradient-based explanations. We further evaluate the plausability of
our explanations (i.e., whether produced explanations align with how people would justify a similar choice) using
human-labeled explanations (text classification and text regression) and through a human study (image classification)
and find that explanations learned with SMaT are more plausible than the static explainers considered. Overall, the
results reinforce the utility of scaffolding as a criterion for evaluating and improving model explanations.

2 Background

Consider a model T : X → Y that was trained on some dataset Dtrain = {(xi, yi)}Ni=1 . For example, this could be a
text or image classifier that was trained on a particular downstream task (with Dtrain being the training data for that
task). Post-hoc interpretability methods typically introduce an explainer module ET : T × X → E that takes a model
and an input, and produces an explanation e ∈ E for the output of the model given that input, where E denotes the space
of possible explanations. For instance, interpretability methods using saliency maps define E as the space of normalized
distributions of importance over L input elements e ∈ △L−1 (where △L−1 is the (L− 1)-probability simplex).

Pruthi et al. [2020] proposed an automatic framework for evaluating explainers that trains a student model Sθ : X → Y
with parameters θ to simulate the teacher (i.e., the original classifier) in a constrained setting. For example, the student
can be constrained to have less capacity than the teacher by using a simpler model or trained with a subset of the dataset
used for the teacher (D̂train ⊊ Dtrain).

In this framework, a baseline student Sθ is trained according to θ∗ = argminθ E(x,y)∼D̂train
[Lsim(Sθ(x), T (x))], and its

simulability SIM(Sθ∗ , T ) is measured on an unseen test set. The actual form of Lsim and SIM(Sθ∗ , T ) is task-specific.
For example, in a classification task, we use cross-entropy as the simulation loss Lsim over the teacher’s predictions,
while the simulability of a model Sθ∗ can be defined as the simulation accuracy, i.e., what percentage of the student and
teacher predictions match over a held-out test set Dtest:

SIM(Sθ∗ , T ) = E(x,y)∼Dtest [1{Sθ∗(x) = T (x)}]. (1)
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Next, the training of the student is augmented with explanations produced by the explainer E. We introduce a student
explainer ES : S × X → E , (the S-explainer) to extract explanations from the student, and regularizing these
explanations on the explanations of teacher (the T -explainer), using a loss Lexpl that takes explanations for both models:

θ∗E = argmin
θ

E(x,y)∼D̂train

[
Lsim (Sθ(x), T (x))︸ ︷︷ ︸

simulability loss

+β Lexpl (ES(Sθ, x), ET (T, x))︸ ︷︷ ︸
explainer regularizer

]
. (2)

For example, Pruthi et al. [2020] considered as a teacher explainer ET various methods such as LIME [Ribeiro
et al., 2016], Integrated Gradients [Sundararajan et al., 2017], and attention mechanisms, and explored both attention
regularization (using Kullback-Leibler divergence) and multi-task learning to regularize the student.

The key assumption surrounding this evaluation framework is that a student trained with good explanations should learn
to simulate the teacher better than a student trained with bad or no explanations, that is, SIM

(
Sθ∗

E
, T
)
> SIM (Sθ∗ , T ) .

For clarity, we will refer to the simulability of a model Sθ∗
E

trained using explanations as scaffolded simulability.

3 Optimizing Explainers for Teaching

As a first contribution of this work, we extend the previously described framework to make it possible to directly
optimize the teacher explainer so that it can most effectively teach the student the original model’s behavior. To this
end, consider a parameterized T -explainer EϕT

with parameters ϕT , and equivalently a parameterized S-explainer
EϕS

with parameters ϕS . We can write the loss function for the student and S-explainer as:
Lstudent(Sθ, EϕS

, T, EϕT
, x) = Lsim (Sθ(x), T (x)) + βLexpl (EϕS

(Sθ, x), EϕT
(T, x)) . (3)

While this framework is flexible enough to rigorously and automatically evaluate many types of explanations, calculating
scaffolded simulability requires an optimization procedure to learn the student and S-explainer parameters θ, ϕS .
This makes it non-trivial to achieve our goal of directly finding the teacher explainer parameters ϕT that optimize
scaffolded simulability. To overcome this challenge, we draw inspiration from the extensive literature on meta-learning
[Schmidhuber, 1987, Finn et al., 2017], and frame the optimization as the following bi-level optimization problem (see
Grefenstette et al. [2019] for a primer):

θ∗(ϕT ), ϕ
∗
S(ϕT ) = argmin

θ,ϕS

E(x,y)∼D̂train
[Lstudent(Sθ, EϕS

, T, EϕT
, x)] (4)

ϕ∗
T = argmin

ϕT

E(x,y)∼Dtest

[
Lsim

(
Sθ∗(ϕT )(x), T (x)

)]
. (5)

Here, the inner optimization updates the student and the S-explainer parameters (Equation 4), and in the outer
optimization we update the T -explainer parameters (Equation 5). Importantly, our framework does not modify the
teacher, as our goal is to explain a model without changing its original behavior. Notice that we also simplify the
problem by considering the more tractable simulation loss Lsim instead of the simulability metric SIM(Sθ∗ , T ) as part
of the objective for the outer optimization.

Now, if we assume the explainers EϕT
and EϕS

are differentiable, we can use gradient-based optimization [Finn et al.,
2017] to optimize both the student (with its explainer) and the T -explainer. In particular, we use explicit differentiation
to solve this optimization problem. To compute gradients for ϕT , we have to differentiate through a gradient operation,
which requires Hessian-vector products, an operation supported by most modern deep learning frameworks [Bradbury
et al., 2018, Grefenstette et al., 2019]. However, explicitly computing gradients for ϕT through a large number of inner
optimization steps is computationally intractable. To circumvent this problem, typically the inner optimization is run
for only a couple of steps or a truncated gradient is computed [Shaban et al., 2019]. In this work, we take the approach
of taking a single inner optimization step and learning the student and S-explainer jointly with the T -explainer without
resetting the student [Dery et al., 2021]. At each step, we update the student and S-explainer parameters as follows:

θt+1 = θt − ηINN∇θ E(x,y)∼D̂train

[
Lstudent(Sθt , Eϕt

S
, T, Eϕt

T
, x)
]

(6)

ϕt+1
S = ϕt

S − ηINN∇ϕS
E(x,y)∼D̂train

[
Lstudent(Sθt , Eϕt

S
, T, Eϕt

T
, x)
]
. (7)

After updating the student, we take an extra gradient step with the new parameters but only use these updates to calculate
the outer-gradient for ϕT , without actually updating θ. This approach is similar to the pilot update proposed by Zhou
et al. [2021b], and we verified that it led to more stable optimization in practice:

θ(ϕt
T ) = θt+1 − ηINN∇θ E(x,y)∼D̂train

[
Lstudent(Sθt+1 , Eϕt+1

S
, T, Eϕt

T
, x)
]

(8)

ϕt+1
T = ϕt

T − ηOUT∇ϕT
E(x,y)∼Dtest

[
Lsim

(
Sθ(ϕt

T )(x), T (x)
)]

. (9)
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Figure 2: Steps of our parameterized attention-based explainer. Dashed red boxes represent the learned parameters
λT = SPARSEMAX(ϕT ) ∈ △H−1, which weigh the average unnormalized attention logits of each head 1 ≤ h ≤ H .
After summing all weighted vectors, we apply a softmax transformation to get the final attention probabilities.

4 Parameterized Attention Explainer

As a second contribution of this work, we introduce a novel parameterized attention-based explainer that can be
learned with our framework. Transformer models [Vaswani et al., 2017] are currently the most successful deep-learning
architecture across a variety of tasks [Shoeybi et al., 2019, Wortsman et al., 2022]. Underpinning their success is the
multi-head attention mechanism, which computes a normalized distribution over the 1 ≤ i ≤ L input elements in
parallel for each head h:

Ah = SOFTMAX(Qh(Kh)⊤), (10)
where Qh = [qh0 , · · · , qhL] and Kh = [kh0 , · · · , khL] are the query and key linear projections over the input element
representations for head h. Attention mechanisms have been used extensively for producing saliency maps [Wiegreffe
and Pinter, 2019, Vashishth et al., 2019] and while some concerns have been raised regarding their faithfulness [Jain
and Wallace, 2019], overall attention-based explainers have been found to lead to relatively good explanations in terms
of plausibility and simulability [Treviso and Martins, 2020, Kobayashi et al., 2020, Pruthi et al., 2020].

However, in order to extract good explanations from multi-head attention, we have two important design choices:

1. Single distribution selection: Since self-attention produces an attention matrix Ah ∈ △L
L−1, we need to pool

these attention distributions to produce a single saliency map e ∈ △L−1. Typically, the distribution from a
single token (such as [CLS]) or the average of the attention distributions from all tokens 1 ≤ i ≤ L are used.

2. Head selection: We also need to pool the distributions produced by each head. Typical ad-hoc strategies
include using the mean over all heads for a certain layer [Fomicheva et al., 2021b] or selecting a single head
based on plausibility on validation set [Treviso et al., 2021]. However, since transformers can have hundreds or
even thousands of heads, these choices rely on human intuition or require large amounts of plausibility labels.

In this work, we approach the latter design choice in a more principled manner. Concretely, we associate each head with
a weight and then perform a weighted sum over all heads. These weights are learned such that the resulting explanation
maximizes simulability, as described in § 3. More formally, given a model TθT and its query and key projections for an
input x for each layer and head h ≤ H , we define a parameterized, differentiable attention explainer EϕT

(TθT , x) as

sh =
1

L

L∑
i=1

(qhi )
⊤Kh, EϕT

(T, x) = SOFTMAX

(
H∑

h=1

λh
T s

h

)
, (11)

where the teacher’s head coefficients λT ∈ △H−1 are given as λT = NORMALIZE(ϕT ) with ϕT ∈ RH .

In this formulation, sh ∈ RL represents the average unnormalized attention logits over all input elements, which
are then combined according to λT and normalized with SOFTMAX to produce a distribution in △L−1. We apply a
normalization function NORMALIZE to head coefficients involved to create a convex combination over all heads in all
layers. In this work we consider the sparse projection function NORMALIZE = SPARSEMAX [Martins and Astudillo,
2016], defined as:

SPARSEMAX(z) = argmin
p∈△H−1

∥p− z∥2.

We choose SPARSEMAX due to its benefits in terms of interpretability, since it leads to many heads having zero weight.
We also found it outperformed every other projection we tried (see § 5.4 for a more detailed discussion). Figure 2
illustrates each step of our parameterized attention explainer.
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5 Experiments

To evaluate our framework, we attempt to learn explainers for transformer models trained on three different tasks: text
classification (§ 5.1), image classification (§ 5.2), and machine translation quality estimation (a text-based regression
task, detailed in § 5.3). We use JAX [Bradbury et al., 2018] to implement the higher-order differentiation, and use
pretrained transformer models from the Huggingface Transformers library [Wolf et al., 2020], together with Flax
[Heek et al., 2020]. For each task, we train a teacher model with AdamW [Loshchilov and Hutter, 2019] but, as
explained in § 3, we use SGD for the student model (inner loop). We also use scalar mixing [Peters et al., 2018] to pool
representations from different layers automatically.3 We train students with a teacher explainer in three settings:

• No Explainer: No explanations are provided, and no explanation regularization is used for training the student
(i.e., β = 0 in Equation 3). We refer to students trained in this setting as baseline students.

• Static Explainer: Explanations for the teacher model are extracted with four commonly-used saliency-
based explainers: (1) a gradient × input explainer [Denil et al., 2014]; (2) an integrated gradients explainer
[Sundararajan et al., 2017]; and attention explainers that uses the mean pooling over attention from (3) all
heads in the model and (4) from the heads of the last layer [Kobayashi et al., 2020, Fomicheva et al., 2021b]
Further details can be found in Appendix A.

• Learned Explainer (SMaT): Explanations are extracted with the explainer described in § 4, with coefficients
for each head that are trained with SMaT jointly with the student. We initialize the coefficients such that the
model is initialized to be the same as the static attention explainer (i.e., performing the mean over all heads).

Independently of the T -explainer, we always use a learned attention-based explainer as the S-explainer, considering all
heads except when the T -explainer is a static attention explainer that only considers the last layers’ heads, where we do
the same for the S-explainer. We use the Kullback-Leibler divergence as Lexpl, and we set β = 5 for attention-based
explainers and β = 0.2 for gradient-based explainers (since we found smaller values to be better). We set Lsim as the
cross-entropy loss for classification tasks, and as the mean squared error loss for text regression. For each setting, we
train five students with different seeds. Since there is some variance in students’ performance (we hypothesize due to
the small training sets) we report the median and interquantile range (IQR) around it (relative to the 25-75 percentile).

5.1 Text Classification

For text classification, we consider the IMDB dataset [Maas et al., 2011], a binary sentiment classification task over
highly polarized English movie reviews. As the base pretrained transformer model, we use the small ELECTRA model
[Clark et al., 2020], with 12 layers and 4 heads in each layer (total 48 heads).

Like the setting in Pruthi et al. [2020], we use the original training set with 25,000 samples to train the teacher, and
further split the test set into a training set for the student and a dev and test set. We vary the number of samples the
student is trained on between 500, 1,000, and 2,000. We evaluate simulability using accuracy (i.e., what percentage of
student predictions match with teacher predictions). The teacher model obtains 91% accuracy on the student test set.

500 1000 2000

No Explainer 81.72 ± [81.24:81.75] 83.44 ± [83.36:83.63] 84.84 ± [84.80:84.88]

Gradient × Input 84.83 ± [84.79:84.88] 81.15 ± [80.95:81.36] 83.84 ± [83.59:84.99]
Integrated Gradients 82.99 ± [82.59:82.99] 81.79 ± [81.72:81.87] 84.20 ± [84.03:85.03]
Attention (all layers) 83.00 ± [82.60:83.00] 85.72 ± [85.72:86.23] 90.08 ± [89.72:90.11]
Attention (last layer) 80.91 ± [79.99:81.07] 83.15 ± [82.91:83.51] 91.47 ± [91.39:91.56]

Attention (SMaT) 91.48 ± [91.40:91.56] 92.56 ± [92.28:92.83] 92.84 ± [92.84:93.08]

Table 1: Results for the IMDB dataset with respect to student simulability in terms of accuracy (%). Underlined values
indicate higher simulability than baseline with non-overlapping IQR.

Table 1 shows the results in terms of simulability (Equation 1) for the three settings. We can see that, overall, the
attention explainer trained with SMaT leads to students that simulate the teacher model much more accurately than
students trained without any explanations, and more accurately than students trained with any static explainer across all
student training set sizes. Interestingly, the gradient-based explainers only improve over the baseline students when the
amount of training data is very low, and actually degrade simulability for larger amounts of data (see discussion in A).
Using only heads from the last layer seems to have the opposite effect, leading to higher simulability than all other
static explainers only for larger training sets.

3Scalar mixing reduced variance of student performance, but we found SMaT still worked with other common pooling methods.
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Figure 3: Explanations given by integrated gradients, attention (last layer), and our
learned attention explainer (SMaT) for two movie reviews of the IMDB dataset (negative
and positive examples). Green and orange represent positive and negative contributions.

AUC

Grad. × Input 0.51
Integrated Grad. 0.53
Attn. (all layers) 0.68
Attn. (last layer) 0.61
Attn. (SMaT) 0.73

Attn. (best layer)* 0.75
Attn. (best head)* 0.75

Table 2: Plausibility on
MovieReviews in terms of
AUC. * represents methods
that use human labels.

Plausibility analysis. For computing plausibility, we select the median model trained with 1,000 samples and
extract explanations for test samples from the MovieReviews dataset [DeYoung et al., 2020], which contains binary
sentiment movie reviews from Rotten Tomatoes alongside human-rationale annotation. Since the ground-truth labels
are binary (indicating whether a token is part of the explanation or not) and the predicted scores are real values, we
follow [Fomicheva et al., 2021a] and report our results in terms of the Area Under the Curve (AUC), which automatically
considers multiple binarization thresholds. The results are shown in Table 2 along with two randomly selected examples
of extracted explanations in Figure 3. As with the simulability, we found that gradient-based explanations are less
plausible than those using attention and that ones produced with SMaT achieve the highest plausibility, indicating that
our learned explainer can produce human-like explanations while maximizing simulability. Moreover, SMaT achieves
a similar AUC score to the best performing attention layer and head,4 while not requiring any human annotations.
This is evidence that scaffolded simulability, while not explicitly designed for it, is a good proxy for plausibility and
“human-like” explanations.

5.2 Image Classification

To validate our framework across multiple modalities, we consider image classification on the CIFAR-100 dataset
[Krizhevsky, 2009]. We use as the base transformer model the Vision Transformer (ViT) [Dosovitskiy et al., 2020], in
particular the base version with 16× 16 patches that was only pretrained on ImageNet-21k [Ridnik et al., 2021]. This
model was trained with images with resolution 224× 224, so we upsample the CIFAR-100 images to this resolution.

Since the self-attention mechanism in the ViT model only works with patch representations, the explanations produced
by attention-based explainers will be at patch-level rather than pixel-level. We split the original CIFAR-100 training set
into a new training set with 45,000 and a validation set with 5,000. Unlike the previous task, we reuse the training set
for both the teacher and student, varying the number of samples the student is trained with between 2,250 (5%), 4,500
(10%) and 9,000 (20%). We use accuracy as the simulability metric and the teacher obtains 89% on test set.

Table 3 shows the results for the three settings. Similarly to the results in the text modality, the attention explainer
trained with SMaT achieves the best scaffolding performance, although the gaps to static attention-based explainers are
smaller (especially when students are trained with more samples). Here, the gradient-based explainers always degrade
simulability across the tested training set sizes and and it seems important that the explanations include attention
information from layers other than the last one.

2,250 4,500 9,000

No Explainer 81.16 ± [80.98:81.26] 84.02 ± [83.98:84.24] 85.20 ± [85.17:85.26]

Gradient × Input 80.93 ± [80.82:81.04] 83.99 ± [83.98:84.13] 85.33 ± [84.85:85.35]
Integrated gradients 80.22 ± [80.17:80.35] 83.44 ± [83.25:83.44] 84.99 ± [84.76:85.22]
Attention (all layers) 82.53 ± [82.53:82.62] 84.81 ± [84.74:84.92] 85.92 ± [85.78:85.94]
Attention (last layer) 82.34 ± [82.30:82.60] 84.65 ± [84.56:84.81] 85.31 ± [84.84:85.31]

Attention (SMaT) 83.09 ± [82.77:83.28] 85.42 ± [85.39:85.85] 85.96 ± [85.74:86.35]

Table 3: Simulability results, in terms of accuracy (%), on the CIFAR100 dataset. Underlined values represent better
performance than baseline with non-overlapping IQR

4AUC scores obtained by independently trying all attention heads and layers of the model.
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Plausibility analysis. Since there are no available human annotations for plausibility in the CIFAR-100 dataset,
we design a user study to measure the plausability of the considered methods. The original image and explanations
extracted with Gradient × Input, Integrated Gradients, Attention (all layers), and Attention (SMaT) are shown to the
user, and the user has to rank the different explanations to answer the question “Which explanation aligns the most
with how you would explain a similar decision?”. Explanations were annotated by three volunteers. After collecting
results, we compute the rank and the TrueSkill rating [Herbrich et al., 2007] for each explainer (roughly, the “skill”
level if the explainers where players in game). Further description can be found in Appendix B. The results are shown
in Table 4. As in previous tasks, attention trained with SMaT outperforms all other explainers in terms of plausibility,
and its predicted rating is much higher than all other explainers. We also show examples of explanations for a set of
randomly selected images in Figure 4.

Input image Integ. Grad. Attn. (all lx.) Attn. (SMaT) Input image Integ. Grad. Attn. (all lx.) Attn. (SMaT)

Figure 4: Explanations given by integrated gradients, attention (last layer), and learned
attention explainer for a set of input images of CIFAR-100. Gold labels are: “television”,
“butterfly”, “cockroach”, and “sunflower”.

Rank TrueSkill

Grad. × Input 3-4 -2.7±.67
Integ. Grad. 3-4 -2.1±.67
Attn. (all lx.) 2 0.7±.67
Attn. (SMaT) 1 4.3±.70

Table 4: Plausibility results
of the human study on vi-
sual explanations. We re-
port the rank and learned
TrueSkill (mean and std) rat-
ing for each explainer.

5.3 Machine Translation Quality Estimation

Quality Estimation (QE) is the task of predicting a quality score given a sentence in a source language and a translation
in a target language from a machine translation system, which requires models that consider interactions between the
two inputs, source and target. Scores tend to be continuous values (making this a regression task) that were collected
from expert annotators. Interpreting quality scores of machine translated outputs is a problem that has received recent
interest [Fomicheva et al., 2021a] since it allows identifying which words were responsible for a bad translation. We use
the MLQE-PE dataset [Fomicheva et al., 2020], which contains 7,000 training samples for each of seven language pairs
alongside word-level human annotation. We use as the base transformer model a pretrained XLM-R-base [Conneau
et al., 2019], a multilingual model with 12 layers and 12 heads in each layer (total of 144 heads).

We exclude one of the language pairs in the dataset (si-en) since the XLM-R model did not support it, leading to a
training set with 42,000 samples. Similar to the CIFAR100 case, we reuse the same training set for both the teacher and
student, sampling a subset for the latter. We vary the number of samples the student is trained with between 2100 (5%),
4200 (10%) and 8400 (20%). Since this is a regression task, we evaluate simulability using the Pearson correlation
coefficient between student and teacher’s predictions.5 The teacher achieves 0.63 correlation on the test set.

2100 4200 8400

No Explainer .7457 ± [.7366:.7528] .7719 ± [.7660:.7802] .7891 ± [.7860:.7964]

Gradient × Input .6846 ± [.6781:.6894] .6922 ± [.6885:.6965] .7141 ± [.7136:.7147]
Integrated gradients .6686 ± [.6677:.6694] .7086 ± [.6994:.7101] .7036 ± [.6976:.7037]
Attention (all layers) .8120 ± [.7955:.8125] .8193 ± [.8186:.8280] .8467 ± [.8464:.8521]
Attention (last layer) .7486 ± [.7484:.7534] .7720 ± [.7672:.7726] .7798 ± [.7717:.7814]

Attention (SMaT) .8156 ± [.8096:.8183] .8630 ± [.8412:.8724] .8561 ± [.8512:.8689]

Table 5: Simulability results, in terms of Pearson correlation, on the ML-QE dataset. Underlined values represent better
performance than baseline with non-overlapping IQR.

Table 5 shows the results for the three settings. Again, the attention explainer trained with SMaT leads to students
with higher simulability than baseline students and static explainer across all training set sizes. For this task, the
gradient-based explainers always degrade simulability across the tested training set size. It also seems that using only
the last layer’s attention is also ineffective at teaching students, achieving the same performance as the baseline.

5Pearson correlation is the standard metric used to evaluate sentence-level QE models.
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EN-DE EN-ZH ET-EN NE-EN RO-EN RU-EN OVERALL

src. tgt. src. tgt. src. tgt. src. tgt. src. tgt. src. tgt. src. tgt.

Gradient × Input 0.58 0.60 0.61 0.51 0.60 0.54 0.61 0.49 0.64 0.59 0.58 0.51 0.61 0.54
Integrated Gradients 0.59 0.60 0.63 0.49 0.60 0.52 0.64 0.48 0.64 0.59 0.60 0.51 0.62 0.53
Attention (all layers) 0.60 0.63 0.68 0.52 0.60 0.61 0.58 0.55 0.66 0.70 0.62 0.55 0.62 0.59
Attention (last layer) 0.51 0.49 0.61 0.49 0.51 0.50 0.55 0.48 0.52 0.57 0.56 0.50 0.54 0.50
Attention (SMaT) 0.64 0.65 0.68 0.52 0.66 0.64 0.66 0.54 0.71 0.70 0.61 0.54 0.66 0.60

Attention (best layer)* 0.64 0.65 0.58 0.53 0.64 0.68 0.68 0.68 0.71 0.76 0.64 0.59 0.65 0.65
Attention (best head)* 0.67 0.67 0.56 0.54 0.70 0.70 0.70 0.69 0.73 0.75 0.67 0.60 0.67 0.66

Table 6: Plausibility results for source and target inputs for each language pair of the MLQE-PE dataset in terms of
AUC. * represents supervised methods that use human labels in some form.

Plausibility analysis. We select the median model trained with 4,200 samples and follow the approach devised in
the Explainable QE shared task to evaluate plausibility [Fomicheva et al., 2021a], which consists of evaluating the
human-likeness of explanations in terms of AUC only on the subset of translations that contain errors. The results
are shown in Table 6. We note that for all language pairs, SMaT performs on par or better than static explainers,
achieving the best results on average. Comparing with the best attention layer/head, an approach used by Fomicheva
et al. [2021b], Treviso et al. [2021], SMaT achieves similar AUC scores for source explanations, but lags behind the best
attention layer/head for target explanations on *-EN language pairs. However, as stressed previously for text and image
classification, SMaT sidesteps human annotation and avoids the cumbersome approach of independently computing
plausibility scores for all heads.

5.4 Importance of the Head Projection

A major component of our framework is the normalization of the head coefficients, as defined in § 4. Although many
functions can be used to map scores to probabilities, we found empirically that SPARSEMAX performs the best, while
other transformations such as SOFTMAX and 1.5-ENTMAX [Peters et al., 2019], a sparse transformation more dense
than sparsemax, usually lead to poorly performing students (see Table 7).

SPARSEMAX SOFTMAX 1.5-ENTMAX No Normalization

No Explainer .7719 ± [.7660:.7802] .7719 ± [.7660:.7802] .7719 ± [.7660:.7802] .7719 ± [.7660:.7802]

Attention (all layers) .8193 ± [.8186:.8280] .7345± [.7335:.7390] .7152 ± [.7111:.7161] .7781 ± [.7762:.7791]
Attention (last layer) .7720 ± [.7672:.7726] .7697± [.7659:.7715] .7807 ± [.7652:.7821] .7768 ± [.7764:.7807]

Attention (SMaT) .8630 ± [.8412:.8724] .7439 ± [.7430:.7484] .7163 ± [.7130:.7239] .8002 ± [.7919:.8100]

Table 7: Simulability results, in terms of accuracy (%), on the MLQE dataset with 4200 training examples, with
different normalization functions.

Furthermore, another benefit of SPARSEMAX is that it produces a small subset of active heads. The heatmaps of attention
coefficients learned after training (λT ), shown in Figure 5, exemplify this. We can see that the dependency between
head position (layer it belongs to) and its coefficient is task/dataset/model specific, with MLQE and CIFAR-100 having
opposite observations. We also found empirically that active heads (λh

T > 0) usually lead to higher plausibility scores,
further reinforcing the good plausibility findings of SMaT. Attention maps for each head can be found in Appendix C.

0 1 2 3
Head

0
1
2
3
4
5
6
7
8
9

10
11

La
ye

r

Head coefficients

0 1 2 3 4 5 6 7 8 9 10 11
Head

0
1
2
3
4
5
6
7
8
9

10
11

La
ye

r

Head coefficients

0 1 2 3 4 5 6 7 8 9 10 11
Head

0
1
2
3
4
5
6
7
8
9

10
11

La
ye

r

Head coefficients

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.00

0.02

0.04

0.06

0.08

Figure 5: Head coefficients for text classification (left), image classification (middle), and quality estimation (right),
illustrating that only a small subset of attention heads are deemed relevant by SMaT due to SPARSEMAX.
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6 Related Work

Explainability for Text & Vision Several works propose explainability methods to interpret decisions made by
NLP and CV models. Besides gradient and attention-based approaches already mentioned, some extract explanations
by running the models with perturbed inputs [Ribeiro et al., 2016, Feng et al., 2018, Kim et al., 2020]. Others even
define custom backward passes to assign relevance for each feature [Bach et al., 2015]. These methods are commonly
employed together with post-processing heuristics, such as selecting only the top-k tokens/pixels with higher scores
for visualization. Another line of work seeks to build a classifier with inherently interpretable components, such as
methods based on attention mechanisms and rationalizers [Lei et al., 2016, Bastings et al., 2019].

Evaluation of explainability methods. As mentioned in the introduction, early works evaluated explanations based
on properties such as consistency, sufficiency and comprehensiveness. Jacovi and Goldberg [2020] recommended
the use of a graded notion of faithfulness, which the ERASER benchmark quantifies using the idea of sufficient and
comprehensive rationales, alongside compiling datasets with human-annotated rationales for calculating plausibility
metrics [DeYoung et al., 2020]. Given the disagreement between explainability methods, Neely et al. [2021] showed
that without a faithful ground-truth explanation it is impossible to determine which method is better. Diagnostic tests
such as the ones proposed by Wiegreffe and Pinter [2019] and Atanasova et al. [2020] are more informative yet they do
not capture the main goal of an explanation: the ability to communicate an explanation to a practitioner.

Simulability. A new dimension for evaluating explainability methods relies on the forward prediction/simulation
proposed by Doshi-Velez and Kim [2017], which states that humans should be able to correctly simulate the model’s
output given the input and the explanation. Chandrasekaran et al. [2018], Hase and Bansal [2020], Arora et al. [2022]
analyze simulability via human studies across text classification datasets. Treviso and Martins [2020] designed an
automatic framework where students (machine or human) have to predict the model’s output given an explanation
as input. Similarly, Pruthi et al. [2020] proposed the simulability framework that was extended in our work, where
explanations are used to regularize the student rather than passed as input.

Learning to explain. The concept of simulability also opens a path to learning explainers. In particular Treviso
and Martins [2020] learn an attention-based explainer that maximizes simulability. However, directly optimizing for
simulability sometimes led to explainers that learned trivial protocols (such as selecting only punctuation symbols or
stopwords to leak the label). Our approach of optimizing a teacher-student framework is similar to approaches that
optimize for model distillation [Zhou et al., 2021a]. However, these approaches modify the original model rather than
introduce a new explainer module. Raghu et al. [2021] propose a framework similar to ours for learning commentaries
for inputs that speed up and improve the training of a model. However commentaries are model-independent and
are optimised to improve performance on the real task. Rationalizers [Chen et al., 2018, Jacovi and Goldberg, 2021,
Guerreiro and Martins, 2021] also directly learn to extract explanations, but can also suffer from trivial protocols.

7 Conclusion & Future Work

We proposed SMaT, a framework for directly optimizing explanations of the model’s predictions to improve the training
of a student simulating the said model. We found that, across tasks and domains, explanations learned with SMaT
both lead to students that simulate the original model more accurately and are more aligned with how people explain
similar decisions when compared to previously proposed methods. On top of that, our parameterized attention explainer
provides a principle way for discovering relevant attention heads in transformers.

Our work shows that scaffolding is a suitable criterion for both evaluating and optimizing explainability methods, and
we hope that SMaT paves way for new research to develop expressive interpretable components for neural networks that
can be directly trained without any human-labeled explanations. We only explored learning attention-based explainers,
but our method can also be used to optimize other types of explainability methods, including gradient-based ones, by
introducing learnable parameters in their formulations. Another promising research direction is to explore using SMaT
to learn explanations other than saliency maps.
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A Explainer Details

With the integrated gradients explainer [Sundararajan et al., 2017], we use 10 iterations for the integral in the simulability
experiments (due to the computation costs) and 50 iterations for the plausability experiments. We use zero vectors as
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baseline embeddings, since we found little variation in changing this. For both gradients-based explainers, we project
into the simplex by using the SOFTMAX function, similar to the attention-based explainers. This results in very negative
values having low probability values.

We would like to note that, unlike the setting in Pruthi et al. [2020], we do not apply a top-k post-processing heuristic
on gradients/attention logits, instead directly projecting them to the simplex. This might explain the difference in results
to the original paper, particularly for the low performance of static explainers.

B Human Study for Visual Explanations

The annotations were collected through an annotation webpage, built on top of Flask. Figure 6 shows the three pages
of the site. During the annotation, users were asked to rank four explanations, unnamed and in random order. After
collecting the ratings, we computed the TrueSkill rating, with an initial rating for each method of µ = 0, σ = 0.5. After
learning the ratings, we then compute the ranks by obtaining the 95% confidence interval for the rating each method,
and constructing a partial ordering of methods based on this.

The volunteers were a mixture of graduates or graduate students known by the authors. However we would like to point
out that due to blind nature of the method annotation, the chance of bias is low.

Figure 6: Login page (left), dashboard (middle) and annotation page (right)

C Importance of the Head Projection
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Original image (television)

Figure 7: Explanations extracted from all layers (rows) and heads (columns) of the teacher after training on CIFAR-100.
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Original image (butterfly)

Figure 8: Explanations extracted from all layers (rows) and heads (columns) of the teacher after training on CIFAR-100.
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